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The linear stability of Bingham-plastic fluid flow between two concentric cylinders
rotating independently and with axial sliding of the inner cylinder (spiral Couette flow)
is studied. Bingham fluid exhibits a yield stress in addition to the plastic viscosity,
which has some inhibiting effects on the competition between the centrifugal and
shear instability mechanisms owing to the inter-relationship of the azimuthal and
axial velocities. Islands of instability, which are found in the spiral Couette flow of
Newtonian fluids, may not exist owing to the effect of yield stress. The possibility of the
yield surface falling between the cylinders is analysed. Although small perturbation
waves appearing on the yield surface are considered, the yield surface, which has
been treated as a free surface, has little effect on the flow stability. The effects of the
axisymmetric and non-axisymmetric perturbation on flow stability are both presented.
Both the rotation of the outer cylinder and a decrease of the gap between the cylinders
have stabilizing effects.

1. Introduction
In the past century, hydrodynamic stability was recognized as one of the most diffi-

cult questions of fluid mechanics. The pioneering work was performed by Helmholtz,
Kelvin, Rayleigh, Taylor, Reynolds, Orr, Sommerfeld and so on. To find why, when
and how laminar flow breaks down into turbulent flow or some other laminar flows
is still the target in this area. In this paper, the linear stability of Bingham-plastic
fluid in spiral Couette flow is studied. It is a combination of the Taylor–Couette flow
and the axial velocity field induced by the relative sliding.

This problem was first reported by Kiessling (1963) and Ludwieg (1964), who
obtained inviscid stability criteria in the narrow-gap case. Up to now, the experiment
of Ludwieg (1964) has been the only one on this topic. Later, Mott & Joseph (1968),
Joseph & Munson (1970) and Hung, Joseph & Munson (1972) studied these general
problems with energy methods. The importance of flow between coaxial cylinders as
a fluid-dynamical paradigm has been well documented in the review by Diprima &
Swinney (1981). The most interesting phenomenon of Taylor–Couette flow is the
orderly progress of nonlinear flow states observed in the system as it undergoes
transition to turbulence. The linear stability analysis of Newtonian spiral Couette
flow has been studied by Ali & Weidman (1993) with a stationary outer cylinder and
the inclusion of end effects. The general problem of oscillatory sliding of cylinders
was studied by Hu & Kelly (1995) and Marques & Lopez (1997), whose results were
in good agreement with those reported by Weisberg, Smits & Keverkidis (1997).
Meseguer & Marques (2000) studied the competition between centrifugal and shear
instability of Newtonian fluid in spiral Couette flow with open-ended configurations.
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Islands of instability were found and explained as the results of the competition
between the centrifugal and shear instability mechanism. An understanding of this
problem could have applications in some industrial processes such as the purification
of industrial waste water (Ollis, Pelizzetti & Serpone 1991), the production of paper
(Cheng & Chang 1992) and wire and cable (Tadmor & Bird 1974) and the return
flow of drilling mud between the rotating drill string and the stationary wall in oil
and gas well drilling (Luo & Peden 1990; Cui & Liu 1995). For all of these, axial
sliding in the cylindrical annulus combined with the rotation of one or both cylinders
makes the stability characteristics and properties of the flow comparatively complex.
Moreover, it is clear that the knowledge gained from these studies may be generally
applicable to a wide range of much more complicated flows that demonstrate this
type of instability.

Many recent studies of non-Newtonian flows have been concerned with viscoelastic
and polymeric flows (Muller et al. 1989, 1993; Larson et al. 1990; Larson 1992; Joo &
Shaqfeh 1992; 1994; Avgousti & Beris 1993; Nsom (1996, 1998); Al-Mubaiyedh,
Sureshkumar & Khomami 2000). Shaqfeh (1996) reviewed purely elastic instabilities in
viscometric flows and pointed out that the flows were simple, but critically important
to the measurement devices common in the laboratories of rheologists and fluids
engineers. Although there are a number of studies on the stability of Newtonian flows
and viscoelastic (polymeric) flows, publications about viscoplastic flows are rare. Pascal
& Rasmussen (1995) studied the stability of power-law-fluid flow between rotating
cylinders. Coronado, Souza & Carvalho (2002) studied the critical Taylor number
of viscoplastic fluids in the case of no imposed axial flow at different geometrical
configurations, i.e. inner-to-outer cylinder radius ratio, and with different rheological
parameters.

Bingham fluid is a type of yield stress fluid. Oldroyd (1947) formulated the
constitutive relations between stress, strain and strain rate by assuming an elastic
response below the yield stress. Generally, the elastic behaviour has been neglected
and the constitutive equation can be written as (see Beris et al. 1985)

τ ∗ = η∗γ̇ ∗, τ ∗ � τ ∗
0 ,

γ̇ ∗ = 0, τ ∗ < τ ∗
0 ,

}
(1.1)

where τ ∗ is the deviatoric stress tensor, γ̇ ∗ is the rate-of-strain tensor whose com-
ponents are defined by

γ̇ ∗
ij = u∗

i,j + u∗
j,i , (1.2)

where u∗
i is the velocity field of the fluid. τ ∗

0 is the yield stress, τ ∗ =
√

τ ∗
ij τ

∗
ij /2 is the

second invariant of the deviatoric stress tensor and η∗ is the effective viscosity which
can be defined as

η∗ = µ∗
0 + τ ∗

0 γ̇ ∗−1, (1.3)

where γ̇ ∗ =
√

γ̇ ∗
ij γ̇

∗
ij /2 is the second invariant of the rate-of-strain tensor and µ∗

0 is
the plastic viscosity. These equations show that in regions where the yield stress is
not exceeded, the rate-of-strain tensor is identically zero. Hence, such regions would
behave as a rigid solid. These regions are called unyielded or plug regions. The
determination of possible unyielded regions in which no deformation occurs is still a
difficulty in flow analysis of Bingham fluids. The interface of the yielded and unyielded
region is called the yield surface and its position relates closely to the flow velocity. For
this reason, Bingham fluid-flow problems are often interpreted as moving-boundary
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problems which are more complex than the flow of Newtonian fluids. Bird, Dai &
Yarusso (1983) reviewed analytical solutions for Bingham fluids in simple geometries.

Graebel (1962) studied the linear stability of a Couette–Taylor flow of a Bingham
fluid. He considered the yield surface and presented the neutral stability curves. In
summary, Graebel pointed out that the non-Newtonian factors involved in the flow of
a Bingham fluid can be generally expected to be a stabilizing influence and the yield
surface plays no role in the stability criterion. Frigaard, Howison & Sobey (1994)
studied the linear stability of plane Poiseuille flow of a Bingham fluid, in which the
unyielded region is considered able to maintain an initial infinitesimal perturbation
persistently. So the disturbance of the yield surface has been taken into account. It
is found that the minimum Reynolds number for linear instability increases almost
linearly with increasing Bingham number which is defined as τ ∗

0 L/µ∗
0U

∗
0 . Here, L is

the length scale and U ∗
0 is the velocity scale. Nsom & Mangel (2001) studied the

stability of Taylor–Dean flow of the Bingham fluid. The effect of the yield stress on
the velocity field is presented. The governing linear stability of the flow is produced
with a small-gap approximation.

In this paper, the effects of the yield stress on the stability of spiral Couette flow
were examined carefully. It is found that the azimuthal and axial velocities of the basic
flow are interdependent owing to the existence of yield stress. In the absence of axial
sliding, the Taylor–Couette flow can be reproduced. When yield stress is small, it causes
instability in the co-rotating state with large outer rotation Reynolds number Re0

and these results are very different to those of Graebel (1962). The stability analysis
of spiral Couette flow shows that the competition between the centrifugal and axial
shearing instability mechanisms, which are independent in Newtonian flows, can be
effectively inhibited owing to the existence of the yield stress. The discontinuities in
the critical inner rotation Reynolds number observed in the Newtonian flows can be
eliminated while the yield stress is large. Corresponding research has, as far as we
know not been presented.

The content of the paper is as follows. A complete physical and numerical descrip-
tion of the problem is given in § 2, and the analytical basic flow solutions are derived.
In § 3, the linear differential equations about the linear stability of the first-order
perturbations are obtained by using Galerkin approximation methods. In § 4, for each
value of Reo, Rez and τ0 (outer Reynolds number, axial Reynolds number and the non-
dimensional yield stress, respectively) the numerical solutions are given. The numerical
results for τ0 = 0 have been compared with those obtained by Sparrow, Munro &
Jonsson (1964) and Meseguer & Marques (2000). The neutral stability curves are
calculated. The ‘islands’ of stability, which appear in Newtonian spiral Couette flow,
may not be observed. This phenomenon is explained in detail as the inhibiting effects
of the yield stress on the competition between the centrifugal instability mechanism
characteristic of the Taylor–Couette problem and the shear instability mechanism
induced by the axial sliding. In § 5, our conclusions are presented.

2. Basic flow solution
As indicated above, spiral Couette flow is the term used to describe the combination

of Taylor–Couette flow between two concentric rotating cylinders, whose radius and
angular velocities are R∗

i , R∗
o and Ω∗

i , Ω
∗
o , and the axial velocity field which was

induced by the sliding of the inner cylinder with a constant velocity U ∗
i (see figure 1).

Apparently, more general flow with both cylinders moving axially can be reduced
to the present case by changing to a reference frame with constant axial speed.
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Figure 1. Geometric scketch and parameters of the spiral Couette flow.

Simon & Ole (1992) investigated a similar flow except that the axial flow was caused
by the pressure gradient and the results were presented analytically for the slot
approximation and numerically for the annulus. In this paper, the solution is found
analytically without any approximation.

It can be seen that the geometry of the annulus, the yield stress and the azimuthal
and axial velocities of the cylinders, which are independent of each other, do
have influence on the instability of the flow. So the independent non-dimensional
parameters chosen in this problem are: the radius ratio ε =R∗

i /R
∗
o; the rotation

Reynolds numbers Rei = ρ∗d∗R∗
i Ω

∗
i /µ

∗
0 and Reo = ρ∗d∗R∗

oΩ
∗
o /µ

∗
0, which describe the

rotation speed of the inner and outer cylinders; the translational velocity of the inner
cylinder is measured by the axial Reynolds number Rez = ρ∗d∗U ∗

i /µ∗
0.

Hereinafter, all variables will be rendered dimensionless using d∗, ρ∗d∗2/µ∗
0, µ

∗2
0 /

d∗2ρ∗ as units for space, time, pressure or stress. Generally, d∗ can be chosen from
R∗

i , R
∗
o, (R

∗
i +R∗

o)/2 or R∗
o − R∗

i and we use d∗ = R∗
i here. The dimensionless continuity

and momentum equations are

∇ · u = 0, (2.1)

∂t u + (u · ∇u) = −∇p + ∇ · τ, (2.2)

where the components of velocity u in cylinder coordinates (r, θ, z) are (ur, uθ , uz).
The dimensionless relative boundary conditions are

ur (Ri) = ur (Ro) = 0, (2.3)

uθ (Ri) = Rei , uθ (Ro) = Reo, (2.4)

uz(Ri) = Rez, uz(Ro) = 0. (2.5)

The dimensionless constitutive equation is

τ = ηγ̇ , τ � τ0,

γ̇ = 0, τ < τ0,

}
(2.6)

where η = 1 + τ0γ̇
−1 is the dimensionless effective viscosity, and τ0 = τ ∗

0 d∗2ρ∗/µ∗2
0

is the Hedstrom number which indicates the dimensionless yield stress. Assuming
axisymmetric and infinite length of the cylinders along the axial, equation (2.1) can
be satisfied naturally. In the most part, this work is concerned with the linear stability
of the steady-state flow. The steady-state equation (2.2) can be simplified as

∂τ̄rθ

∂r
+ 2

τ̄rθ

r
= 0, (2.7)
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∂τ̄rz

∂r
+

τ̄rz

r
= 0. (2.8)

Through integration, (2.7) and (2.8) can be derived as

τ̄rθ = A/r2, (2.9)

τ̄rz = B/r, (2.10)

where A and B are constants. According to (2.6), the Bingham fluid remains unyielded
when τ̄ 2

rθ + τ̄ 2
rz < τ 2

0 . So from (2.9) and (2.10), it is obvious that if the yield surface
generates in the gap between the concentric cylinders, the Bingham fluid outside
the yield surface is in rigid-body rotation. Substituting (2.6) into (2.9), (2.10) and
combining with the expressions of strain rate, we have

∂ūθ

∂r
− ūθ

r
− A

r2
+

τ0A√
A2 + B2r2

= 0, (2.11)

∂ūz

∂r
− B

r
+

rτ0B√
A2 + B2r2

= 0, (2.12)

and the boundary conditions become

ūθ (Ri) = Rei , ūθ (Ry) = Reo

Ry

Ro

, (2.13)

ūz(Ri) = Rez, ūz(Ry) = 0. (2.14)

Ry is the position of the yield surface which is unknown before the settlement of the
problem. According to equations (2.6), (2.9) and (2.10), the condition satisfying the
yield surface can be written as

Φ(Ry) =
1

Ry

√
A2

R2
y

+ B2 = τ0. (2.15)

The distribution of the velocity, the yielded and unyielded regions are determined by
the set of equations (2.11)–(1.15). The expressions of basic flow velocity (0, ūθ , ūz) can
be derived and classified according to the motion of the cylinders:

(i) Reo/Ro = Rei/Ri and Rez = 0. The inner and outer cylinders rotate synchronously
and the inner cylinder is stationary along the axial direction. The velocity expressions
are

ūθ = Dr, (2.16a)

ūz = 0, (2.16b)

where parameter D = Reo/Ro = Rei/Ri . In this case, all Bingham fluid in the gap
between the cylinders remains unyielded and rotates just like the rotation of a rigid
body. So, it maintains stabilization constantly.

(ii) Reo/Ro �= Rei/Ri and Rez = 0. The inner cylinder is stationary along the axial
direction. The velocity expressions are

ūθ = Dr − A

2r
− τ0A√

A2
r ln r, (2.17a)

ūz = 0, (2.17b)
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where A and D can be determined by both the boundary conditions

DRi − A

2Ri

− τ0A√
A2

Ri lnRi = Rei , (2.17c)

DRy − A

2Ry

− τ0A√
A2

Ry ln Ry = Reo

Ry

Ro

, (2.17d)

and the yield surface condition √
A2

R2
y

= τ0Ry, (2.17e)

where Ry is the position of the yield surface which is unknown before the settlement of
the problem. Bird, Armstrong & Hassager (1977) have studied the tangential annular
flow of Bingham fluid caused by the rotation of the outer cylinder, while the inner
cylinder is held fixed. The results can be reproduced by setting Rei =0 in (2.17c).

(iii) Reo/Ro = Rei/Ri and Rez �= 0. The inner and outer cylinders rotate synchro-
nously while the inner cylinder slides along the axial direction. The velocity expressions
are

ūθ = Dr, (2.18a)

ūz = − τ0B√
B2

r + B ln r + C, (2.18b)

and B , C and D can be determined by the boundary conditions

DRi = Rei , (2.18c)

− τ0B√
B2

Ri + B lnRi + C = Rez, (2.18d)

− τ0B√
B2

Ry + B lnRy + C = 0, (2.18e)

and the yield surface condition √
B2 = τ0Ry. (2.18f)

(iv) Reo/Ro �= Rei/Ri and Rez �= 0. The velocity expressions are

ūθ = Dr − A

2r
− rτ0A√

A2
ln

(√
A2 + B2r2 −

√
A2

r

)
, (2.19a)

ūz = −τ0

B

√
A2 + B2r2 + B ln r + C, (2.19b)

and A, B, C and D can be determined by the boundary conditions

DRi − A

2Ri

− Riτ0A√
A2

ln

(√
A2 + B2R2

i −
√

A2

Ri

)
= Rei , (2.19c)

− τ0

B

√
A2 + B2R2

i + B ln Ri + C = Rez, (2.19d)

DRy − A

2Ry

− Ryτ0A√
A2

ln

(√
A2 + B2R2

y −
√

A2

Ry

)
= Reo

Ry

Ro

, (2.19e)

− τ0

B

√
A2 + B2R2

y + B lnRy + C = 0, (2.19f)
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Figure 2. Velocity profiles with different Hedstrom number while ε = 0.5, Rei = 100,
Reo = 30 and Rez = 100. (a) Azimuthal velocity profiles. (b) Axial velocity profiles.
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Figure 3. Velocity profiles with different Rei while ε = 0.5, Reo = 30, Rez =30 and τ0 = 300.
(a) Azimuthal velocity profiles. (b) Axial velocity profiles.

and the yield surface condition

1

Ry

√
A2

R2
y

+ B2 = τ0. (2.19g)

It must be pointed out that whether there are unyielded regions or not, the velocity
expressions listed above are valid. If all Bingham fluid in the gap has been yielded,
Ry should be replaced by Ro and the yield surface condition should be ignored.

The velocity profiles are shown in figure 2 with different values of Hedstrom
number τ0. It can be seen that the unyielded region enlarges and the velocity profile
becomes more steep with increasing Hedstrom number. The azimuthal and axial
velocity profiles are coupled, in contrast to those in Newtonian spiral Couette flow,
because of the existence of yield stress. Figures 3 and 4 show the velocity profiles with
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Figure 4. Velocity profiles with different Rez while ε = 0.5, Rei = 100, Reo = 30 and
τ0 = 300. (a) Azimuthal velocity profiles. (b) Axial velocity profiles.
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different values of Reo and Rez. Figure 5 shows the velocity profiles with different
cylinder radius ratio ε. The gap between the cylinders reduces as ε increases. When
ε tends to 1.0, the distributions of the velocity approach those of plane Couette flow
and there is no longer an unyielded region in the gap.

3. Linear stability analysis
In the preceding section, the basic flow has been obtained. Considering an infinite-

simal disturbance to the basic flow, u and p can be decomposed as u = ū + u′,
p = p̄ + p′, where u′ and p′ are assumed to vary periodically along the azimuthal and
axial directions. The expressions can be written as

u′ = U(r) exp(i(αθ + βz + κt)), (3.1a)

p′ = P (r) exp(i(αθ + βz + κt)), (3.1b)
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where U = (Ur, Uθ , Uz) and P can be assumed to be a function of r . The linearized
disturbance equations are derived by substitution of (3.1a), (3.1b) into (2.1), (2.2) and
subtraction of the basic flow equations. The expressions are

∇ · u′ = 0, (3.2)

∂t u′ + (ū · ∇)u′ + (ū · ∇)ū = −∇p′ + ∇ · τ ′. (3.3)

The linearized boundary conditions are

u′(Ri) = 0, (3.4)

u′(Ro) = 0. (3.5)

If the yield surface does fall in the gap between the cylinders, (3.5) should be replaced
by the linearized yield surface boundary conditions (r = Ry) (the details are given in
Appendix A)

∂u′
r (Ry)

∂r
= 0, (3.6a)

∂u′
θ (Ry)

Ry∂θ
+

u′
r (Ry)

Ry

= 0, (3.6b)

∂u′
z(Ry)

∂z
= 0, (3.6c)

∂u′
θ (Ry)

∂z
+

∂u′
z(Ry)

Ry∂θ
= 0, (3.6d)

∂u′
θ (Ry)

∂r
+

∂u′
r (Ry)

Ry∂θ
− u′

θ

Ry

= −∂2ūθ (Ry)

∂r2
R′, (3.6e)

∂u′
r (Ry)

∂z
+

∂u′
z(Ry)

∂r
= −∂2ūz(Ry)

∂r2
R′, (3.6f)

and the linearized disturbance velocity at the yield surface, i.e.

u′(Ry) = 0, (3.7)

where R′, which describes the initially smooth perturbation of the yield surface. Since
the Bingham fluid models a real fluid which behaves both as a viscous fluid and
as an elastic solid according to whether or not the yield stress is exceeded, it can
be considered that the unyielded regions should be able to maintain an infinitesimal
perturbation without breaking up (see Frigaard et al. 1994). According to (3.6a)–
(3.6f ), the expression of R′ can be assumed as

R′ = Ψ exp(i(αθ + βz + κt)), (3.8)

where Ψ is the amplitude of the perturbation. Linearizing the nonlinear constitutive
equation (2.6), we have

τ = τ̄ + τ ′, (3.9)

where τ ′ is the perturbation of τ due to the disturbance of velocity. The components
of τ ′ can be expressed as

τ ′
rr = ηγ̇ ′

rr , τ ′
θθ = ηγ̇ ′

θθ , τ ′
zz = ηγ̇ ′

zz, τ ′
zθ = ηγ̇ ′

zθ , (3.10a)

τ ′
rθ = ηγ̇ ′

rθ − χ(¯̇γ rθ , ¯̇γ rθ )γ̇
′
rθ − χ(¯̇γ rθ , ¯̇γ rz)γ̇

′
rz, (3.10b)

τ ′
rz = ηγ̇ ′

rz − χ(¯̇γ rθ , ¯̇γ rz)γ̇
′
rθ − χ(¯̇γ rz, ¯̇γ rz)γ̇

′
rz, (3.10c)
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where η = (1 + τ0/ ¯̇γ ) and ¯̇γ =

√
¯̇γ

2
rθ + ¯̇γ

2
rz, the definition of function χ(x, y) is χ(x, y) =

τ0xy/ ¯̇γ
3
. The terms ¯̇γ rθ and ¯̇γ rz are shearing strain rates of the basic flow. Derivation

of these equations is described in detail in Appendix B.
In order to solve the above system numerically, the spatial discretization of (3.3)

is achieved by projecting it onto a suitable basis of a velocity space in which (3.2) is
satisfied by implication. The definition of the velocity space is

Γ = {U ∈ Π (Ri, Ry)
3|∇ · U = 0, U(Ri) = U(Ry) = 0}. (3.11)

If all the Bingham fluid in the flow field has been yielded, Ry should be replaced
by Ro in the equations above. Π (Ri, Ry)

3 is the Hilbert space of square-integrable
vectorial-functions defined in the interval (Ri, Ry). The definition of the linner product
is

〈U, V 〉 =

∫ Ry

Ri

U∗ · V r dr, (3.12)

where * denotes the complex conjugate. For any U ∈ Γ and any pressure function P ,
it is obvious that 〈U, ∇p〉 = 0. Therefore, U can be expanded in a suitable basis of Γ

as

U =
∑

n

anUn. (3.13)

Substituting (3.13), (3.1a) into (3.2) and (3.3), the continuity equation (3.2) is satisfied
automatically. Projecting the linearized equations (3.3) onto Γ , the pressure term
disappears and we obtain a linear system for the coefficient an

λ
∑

n

〈Ũm, Un〉an =
∑

n

〈Ũm, (Un · ∇ū + ū · ∇Un − ∇ · τ ′(ū, Un))〉an, (3.14)

where λ= −iκ, τ ′(ū, Un) can be determined by equations (3.10a)–(3.10c).
The Galerkin scheme is implemented, where the basis ({Un}) used to expand the

velocity is the same to that used for projection ({Ũm}). A detailed discussion may
be found in Moser, Moin & Leonard (1983), Canuto et al. (1988) or Meseguer &
Marques (2000). According to the definition of velocity space in (3.11), a basis for Γ

can be chosen as

U1
j = (0, −rβφj , αφj ), (3.15)

U2
j = (−iβψj , 0, D+ψj ), (3.16)

where D= ∂r, D+ = ∂r + 1/r . The terms φj and ψj are functions satisfying the
boundary conditions φj =ψj = Dψj = 0 on Ri and Ry . From (3.6a)–(3.6f ) we have∑

j

−a1
j RyβDφj + D2ūθ (Ry)Ψ = 0, (3.17)

∑
j

(
a1

j αDφj + a2
j DD+ψj

)
+ D2ūz(Ry)Ψ = 0, (3.18)

where a1
j and a2

j are coefficients in (3.13). It must be pointed out that if all the
Bingham fluid in the gap has been yielded, the yield surface does not appear and
equations (3.17) and (3.18) should be ignored. Introduce the new radial coordinate

x = 2

(
r − Ri

Ry − Ri

)
− 1, (3.19)
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N Reic βc

8 192.9022 9534 3.9427 5222
16 192.9053 4161 3.9423 8312
24 192.9053 4160 3.9423 2700
32 192.9053 4160 3.9423 2544
40 192.9053 4160 3.9423 2175
48 192.9053 4160 3.9423 2685

Table 1. Critical values with different spectral approximate order, when ε = 0.5, Reo = 30,
Rez = 30 and τo = 300, α = −1 being the dominant azimuthal mode. The position of the yield
surface is Ry = 1.86.

where x ∈ [−1, 1] and Ry should be replaced by Ro if all the Bingham fluid has been
yielded. A simple choice for φj and ψj , which satisfies the boundary conditions (3.4)
and (3.7), is

φj (r) = (1 − x2)Tj (x), ψj (r) = (1 − x2)2Tj (x), (3.20)

where Tj (x) is the Chebyshev polynomials. With this choice, all inner products in
(3.14) can be numerically computed through Gauss–Legendre quadrature. Finally, the
generalized complex eigenvalue system of (3.14) can be written as

Hx = λGx, (3.21)

where λ= −iκ and the vector x contains the real and imaginary parts of the coefficients
an defined in (3.13). H, G are constant matrices dependent on the basic flow and G is
positive definite.

For numerical computation, normally, it is necessary to choose j = 0, 1, 2, . . . ,

N − 1. Including all a1
j , a

2
j and Ψ , there are 2N +1 unknowns; however, combining

(3.17), (3.18) and (3.21), 2N + 2 equations are obtained. It is clear that the problem is
caused by the finite truncation of the series in (3.13). The methods used to resolve the
problem are similar to those used by Orszag (1971), whereby the eigenvalue problem
of (3.21) can be written in the explicit functional form

λ = λ(Rei , Reo, Rez, τ0, ε, β, α). (3.22)

It should be remarked that (3.22) is a function of the parameters which have dominat-
ing effects on the dynamic characteristics of the system. The resulting algebraic
generalized eigenvalue problem is solved with a public-domain subroutine which
uses QZ factorization (Garbow 1978). For given Reo, Rez, τ0, ε and α, the curves of
Re(λ) = 0 in the (β, Rei)-plane are termed neutral stability curves (NSC). As will be
seen in the following section, the NSC curves for the problem may have multiple
extrema (maxima and minima), and exhibit disconnected parts and sharp geometrical
forms. The critical parameters (Reic, βc), which are the local extremum values of NSC,
are calculated with different parameters. The convergence of the numerical method
is shown in table 1, where the critical inner Reynolds number Reic and the critical
axial wavenumber βc are presented as a function of the number of spectral modes
(N ) considered for the calculation in each case. It shows that N = 24 is sufficient for
the computation of linear stability here.
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Figure 6. Comparison between the results of Sparrow et al. (1964) and those in this paper.
(a) ε = 0.5. (b) ε = 0.75.

4. Results and discussions
In this section, the stabilizing effects of Reo, Rez, τ0, ε are studied. The Taylor–

Couette flow (Rez = 0) of Bingham fluid is considered in the first part of this section
in order to provide a basis for the main results of this work. The effects of yield stress
on the flow instability are the main concern. In the second part, the axial sliding flow
with rigid rotation is studied. In the last part, the more complex spiral Couette flow is
studied and some new phenomena, related to the yield stress, are presented in detail.

4.1. Taylor–Couette flow

The instability of the Taylor–Couette problem is studied first in the absence of axial
flow in order to check the feasibility of the computational method and the validity
of the code in this study. The axisymmetric disturbances are involved because of
the axisymmetric basic flow. First of all, we solved the stability problem in hand for
the Newtonian fluid case (τ0 = 0.0). For comparison with earlier results obtained by
Sparrow et al. (1964), the neutral stability curves (NSC) of Taylor–Couette flow are
presented. This shows that our results fully coincide with the previous computations
(see figure 6). The yield stress has a distinct stabilizing effect on the flow when Reo

tends to 0. In the counter-rotating state, the stabilizing effects are more effective at
low Reo values than high. These results are expected according to the constitutive
equation (2.6). It shows that at large shearing strain, the yield stress makes little
contribution to the effective viscosity η and the dynamic characteristics of Bingham
fluid approximate those of Newtonian fluid. From the comparison between figures 6(a)
and 6(b), it can be seen that with the same value of τ0, Reo, the value of Reic for
ε =0.75 is much greater than that for ε = 0.5. The explanation is that with the
increasing value of radius ratio ε, the gap between cylinders decreases and the
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distributions of the velocity approach those of plane Couette flow, so that the flow
becomes stable.

From (2.6), the effective viscosity η increases with increasing yield stress. Figure 7
shows Reic and βc as a function of τ0 with different values of Reo. In the counter-
rotating state (where Reo < 0), it can be seen that the stabilizing effects of the
yield stress on the fluid instability are dominant. The critical Reynolds number
Reic increases monotonically with increasing τ0 (see figure 7a). In the co-rotating
state (where Reo > 0), for Reo = 80 the critical Reynolds number Reic also increases
monotonically with increasing τ0. However, if we move to a higher Reo value
(Reo = 120, 160), the critical Reynolds number Reic decreases with increasing τ0 while
τ0 falls in the low-value region. This phenomenon can also be seen in figure 6(a), in
which the curve of Bingham fluid falls below that of Newtonian fluid as the outer
Reynolds number Reo moves to a high value. This is because when Reo is large, the
viscosity plays a minor role in the flow instability. From § 2, it is known that, owing
to the effects of the yield stress, the velocity profiles can be made steeper than the
profiles of the Newtonian flow, so that the flow can be made unstable.

To give a physical explanation of the role of the yield stress, the energy of the
disturbance flow is considered, which in association with (3.3) is readily found to be

dE′

dt
= S + S1 − Φ, (4.1)

where

E′ =

∮
V

1
2

(
u′2

r + u′2
θ + u′2

z

)
dV, (4.2)

S = −
∮

V

(
Dūθ − ūθ

r

)
u′

ru
′
θ dV, (4.3)

S1 =

∮
V

χ(¯̇γ rθ , ¯̇γ rθ )(γ̇
′
rθ )

2 dV, (4.4)

Φ =

∮
V

1
2
η[(γ̇ ′

rr )
2 + (γ̇ ′

θθ )
2 + (γ̇ ′

zz)
2 + 2(γ̇ ′

rθ )
2 + 2(γ̇ ′

θz)
2 + 2(γ̇ ′

rz)
2] dV. (4.5)



34 J. Peng and K.-Q. Zhu

1×103

5×102

1.5×1031.5×103
3×1033×103

Reic

Rez Rez

βc

(a) (b)

τ0 = 0
50
300

0.2

0.4

0.6

0.8

–4

–4

–4

–5

Figure 8. Sliding rigid rotation with different value of τ0. (a) Critical Reynolds number Reic

and (b) critical wavenumber βc as a function of the axial Reynolds number Rez.

The integration in each case is performed over a disturbance cell. Since in § 2, it has
been indicate that the velocity profiles become steep along the gap with increasing
yield stress, S can be influenced by the yield stress indirectly. On the other hand, Φ ,
the dissipation function associated with the disturbance, is also increased owing to
the increasing yield stress. This means that the fluid is now better able to dissipate the
disturbance energy. S1, which is positive definite, is a very large item in comparison
with the energy equation in Graebel (1962). It can be understood that S1 is caused
by variation of the effective viscosity due to the effects of the disturbance. Clearly, S1

can cause the transfer of energy from the basic flow to the disturbance flow, which
can make the flow unstable. For the neutrally stable case dE′/dt =0, then, the value
of S + S1 must be greater than Φ to cause instability.

In § 2, when τ0 is large enough, an unyielded region will be generated in the gap.
Although it seems that the distrubance of the yield surface can be regarded as a
destabilizing agent, from figure 7, according to the fairly smooth curves, the presence
of a yield surface plays no role in the stabilizing criterion. This result is perhaps
because the yield surface is an interior surface instead of a material surface. The
disturbance waves on the surface are not able to redistribute effectively the energy
involved. In figure 7(a), when τ0 is large, either in a co-rotating or a counter-rotating
state, the critical Reynolds number Reic increases almost linearly with increasing τ0.
The critical axial wavenumbers, as a function of τ0, are shown in figure 7(b). When
τ0 is large enough, the critical axial wavenumbers βc are approximately independent
of Reo in the co-rotating state. These can be understood according to the increase of
the unyielded region with increasing τ0, which can make the flowing (yielded) region
smaller and cause the flow to be stable.

4.2. Axial sliding with rigid rotation (Rei = εReo)

In this section, we analyse the rigid rotation case Ω∗
i =Ω∗

o (or Rei = εReo) with sliding
of the inner cylinder along the axial direction. This is relevant to understanding the
effects of the yield stress on the shearing instability mechanism. In § 2, when Rez =0,
all Bingham fluid in the gap between the cylinders remains unyielded because of the
existence of the yield stress. So stabilization is constanty maintained.

Figure 8 shows the computed critical Reynolds number Reic = εReo and critical
wavenumber βc as a function of the axial speed Rez with different τ0. The logarithmic
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coordinates are used. The critical regime has an asymptotic value as Rez is increased.
The dependence of the critical wavenumber βc on the neutral curve is depicted in
figure 8(b). The presence of a maximum can be observed and the value of βc

decreases as the axial Reynolds number Rez increases. Similar results can be found in
Meseguer & Marques (2000).

Nevertheless, as has been mentioned above, for large shearing strain, the yield stress
makes little contribution to the effective viscosity η and the dynamic characteristics
of Bingham fluid approximate those of Newtonian fluid. It can be seen in figure 8(a)
that the yield stress has distinct stabilizing effects while Rez is small. For τ0 increasing
from 0 to 300, the asymptotic value of Rez, as Reic is increased, varies from 85.11 to
190.24. In this limit, the critical azimuthal wavenumber varies from α = −5 (τ0 = 0)
to α = − 4 (τ0 = 300). In figure 8(b), the value of Rez, for which the maximum of βc

occurs, varies from 122.05 to 249.95. On the other hand, as the axial sliding Reynolds
number increases, the critical rotation Reynolds number Reic approaches a uniform
asymptotic value 33.24, which is independent of the yield stress. In figure 8(b), the
critical wavenumber also approaches the value for Newtonian flow with increasing
Rez.

4.3. Spiral Couette flow

In § 4.1, Taylor–Couette flow of Bingham fluid has been studied, in which Rez = 0 is
required and only the axisymmetric disturbances are considered. In this section, the
effects of axial sliding are included and both the axisymmetric and non-axisymmetrical
disturbances are considered. The dominant azimuthal modes of disturbances are
computed at different values of Reo, Rez and τ0.

First, the effects of Reo, Rez and τ0 on the flow instability with axisymmetric distur-
bances are studied. From § 4.1, it is indicated that the rotation of the outer cylinder
generally has a stabilizing effect on the Taylor–Couette flow and the co-rotating state
is more stable than the counter-rotating state. The same results can also be found in
the spiral-Couette flow, where there is axial sliding of the inner cylinder. Figure 9(a)
shows Reic as a function of Rez with different Reo. It shows that Reic is increased
owing to the increasing of Rez. This is because, with the existence of the axial sliding,
monodirectional vorticities can be generated from the sliding wall of the inner cylinder
and transferred into the flow field due to the effects of viscosity. So the axial sliding
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movement has some stabilizing effects on the spiral-Couette flow with axisymmetric
disturbances mode. From figure 9(a), we can see that the stabilizing effects of the
sliding on the axisymmetric disturbance mode (α = 0) are mainly in the co-rotating
case. These effects are also reported by Ali & Weidman (1993) and Meseguer &
Marques (2000) for the same Newtonian fluid flow. Figure 9(b) shows that the value
of the critical axial wavenumber βc descends monotonically with increasing Rez.

Figures 10 and 11 show the curves of Reic and βc as a function of τ0 with different
Rez in the counter-rotating state (Reo = −120) and co-rotating state (Reo = 120). The
stabilizing effects of the axial sliding movement are also shown here. From § 4.1, it is
known that τ0 has a general stabilizing effect on the flow with Rez = 0 in the counter-
rotating state. This can also be seen in figure 10(a). From § 2, the axial velocity ūz

and the azimuthal velocity ūθ are interdependent because of the existence of the yield
stress. When Rez is large, the yield stress makes little contribution to the effective
viscosity η. So the effects of the yield stress on the dynamic characteristics of Bingham
fluids are weak for the flow with large Rez and small τ0. It can be seen in figure 10(a)
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that the stabilizing effects of τ0 are stronger with a low value of Rez than those with
a high value of Rez. The critical axial wavenumber βc is nearly independent of τ0

when Rez is a high value. This can be seen in figures 10(b) and 11(b). In figure 11(a),
for the co-rotating state, a descending section of Reic can be found with increasing τ0,
just like those in figure 7(a). The value of τ0, at which the minimum of Reic appears,
increases with increasing Rez.

Up to now, only the axisymmetric disturbances (α = 0) have been considered. Since
perturbations, which can be decomposed into different azimuthal modes, are generated
owing to the non-uniform or oscillating flow field, the non-axisymmetrical disturbances
(α �=0) obviously do exist and should be considered carefully. The results are
distinctly different from those with axisymmetric disturbances (α = 0). Figure 12
shows the neutral stability curves of the Newtonian and Bingham fluids for Reo = 200,
ε = 0.5, α = −4. For Newtonial fluid, the island of instability appears for Rez =82.64
figure 12(a). Owing to the appearance of the island, we have three extrema for
Rei , two minima and a maximum. The neutral stability curve has two disconnected
branches. The absolute minimum of Rei (termed the critical Reynolds number Reic)
becomes discontinuous (zeroth-order discontinuity) as soon as the island of instability
appears (figure 13, solid lines). Meseguer & Marques (2000) have discussed this
phenomenon, particularly in the Newtonian flow, and pointed out that the competition
between centrifugal and shear instability causes the neutral stability curves to
develop islands of instability. Similar islands of instability have also been found
in Mcfadden et al. (1990) and Marques & Lopez (1997). Figure 12(b) shows the
neutral stability curve of Bingham fluid with the Hedstrom number τ0 = 300. It can be
seen that the islands of instability cannot be developed again and the discontinuity
disappears. Plotting the position of all the absolute minimal values of Rei as a
function of Rez with Reo = 200 and different τ0, the solid curves shown in figure 13
are obtained, where the dashed curves correspond to the other extrema. The numbers
marked on the curves are the critical azimuthal mode α. The curves appears to
have discontinuities in the derivative (first-order discontinuities), when the critical
azimuthal mode changes. The figure shows that the critical Reynolds number
Reic is discontinuous (zeroth-order discontinuity) for small values is of τ0. When
τ0 = 0, the Bingham fluid can be treated as a Newtonian fluid and the results are
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consistent with those of Meseguer & Marques (2000). The discontinuity appears for
Rez = 82.64 (consistent with Meseguer & Marques 2000). When τ0 = 50, the position
of the discontinuity moves to Rez = 107.72. When τ0 = 150, it can be seen that the
discontinuity nearly disappears. This means that the yield stress can have effects that
inhibit the generation of discontinuity. When τ0 is large enough, such as τ0 = 300,
for our calculation, no discontinuity can be generated. The discontinuity of the critical
parameter depends on the experimental conditions. If Reo is fixed and Reic(τ0, Reo,

Rez) calculated, the zeroth-order discontinuity would be found, as shown in figure
13. However, if Reo is fixed and Rezc(τ0, Rei , Reo) calculated, a continuous result is
found. We have followed the latter conditions to obtain the critical surface in the fold
region. Figure 14 show perspective views of the critical surface with τ0 = 50 and 300.
When τ0 = 50, the whole critical surface is multivalued and continuous, but a fold is
developed (figure 14a). However, when τ0 = 300, the critical surface is single-valued.
Compared with a similar surface of Newtonian fluid (Meseguer & Marques 2000),
it is clear that with the existence of the yield stress, the fold region is attenuated.
Being similar to those in § 4.1, the energy equation of the disturbance flow can also
be written as (4.1) except that S and S1 are

S = −
∮

V

[
u′

ru
′
θ

(
Dūθ − ūθ

r

)
+ u′

ru
′
zDūz

]
dV, (4.6)

S1 =

∮
V

[χ(¯̇γ rθ , ¯̇γ rθ )(γ̇
′
rθ )

2 + 2χ(¯̇γ rθ , ¯̇γ rz)γ̇
′
rθ γ̇

′
rz + χ(¯̇γ rz, ¯̇γ rz)(γ̇

′
rz)

2] dV

=

∮
V

τ0

¯̇γ
3
(¯̇γ rθ γ̇

′
rθ + ¯̇γ rzγ̇

′
rz)

2. (4.7)

S1, which is positive definite, can cause the flow to be unstable. Although, in § 2,
the velocity components (ūθ , ūz) of the basic flow depend upon each other because
of the existence of yield stress, in (4.6), it seems that S is just the linear combination
of the terms caused by Taylor–Couette flow and axial sliding. However, in (4.7), the
combination is nonlinear when τ0 > 0. This indicates that the instabilities caused by
rotating and axial sliding are related owing to the effects of yield stress.
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Figure 15 is the projection of the critical surface Reic(τ0, Reo, Rez) onto the (Reo,

Rez) surface when τ0 = 50. The curves corresponding to the change in the azimuthal
mode α are plotted. This shows the most unstable azimuthal mode of the disturbance
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state while ε = 0.5. (a) τ0 = 50. (b) τ = 300.

for particular, Reo and Rez. It can be seen that, along these curves, the change in α

is always ±1, except close to the Rez =0 axis and near the shaded region. The same
phenomena are found in the flow of Newtonian fluids. Meseguer & Marques (2000)
explained these by introducing the competition between ±α modes (when Rez ∼ 0) or
the competition between the centrifugal instability and the shear instability. Figure 16
is the projection of surface Reic(τ0, Reo, Rez) onto the (Reo, Rez) surface when τ0 = 300.
The changes in α are always ±1. Comparing figures 15 and 16, it can be seen that
when Rez is small enough (Rez ∼ 0), for the co-rotating states, the most unstable
disturbance, which is about to be amplified and leads to the destabilization of the
flow, is the axisymmetric (α = 0) azimuthal mode. The yield stress can effectively
inhibit the competition between the two instability mechanisms and the competition
between mode ±α when Rez ∼ 0.

Figure 17 shows Reic as a function of Rez for different values of Reo in the co-
rotating state when τ0 = 50 and τ0 = 300. The points where the azimuthal wavenumber
α changes, are distinguished by vertical bars. In figure 17(a), for τ0 = 50, sections of
the bulge region are displayed. The Reic grows dramatically with increasing Reo in
the region with low values of Rez, which suggests that the centrifugal instability is the
dominant instability mechanism. However, with increasing Rez, the effects of shear
instability are intensified, especially for disturbance with a non-axisymmetric mode.
The discontinuities are generated as a result of the competition between the centri-
fugal and shear instability mechanisms. However, in figure 17(b), for τ0 = 300, no
discontinuity grows while Rez increases. Comparing figures 17(a) and 17(b) shows



Linear stability of Bingham fluids 41

200

150

100

250

200

150

500 100 150 200 500 100 150 200
50 100

Reo = 50
100
150
200
250

Reic

Rez Rez

(a) (b)

Figure 18. The critical inner Reynolds number Reic as a function of Rez in the
counter-rotating state while ε = 0.5. (a) τ0 = 50. (b) τ0 = 300.

that the yield stress appears to have destabilizing effects on the flow stability in the
co-rotating state with large Reo and small Rez. Figure 18 shows Reic as a function of
Rez for different values of Reo in the counter-rotating state when τ0 = 50 and τ0 = 300.
Here, Reic changes smoothly and almost independently of the axial sliding Rez,
which suggests that the centrifugal instability is the dominant instability mechanism,
especially for large Reo. Comparing figures 17 and 18 also indicates that the effect of
axial sliding on axisymmetric modes is slightly stabilizing (mainly in the co-rotating
state as mentioned before), in contrast to their destabilizing effect on non-axisymmetric
modes.

5. Conclusion
In this work, the stability problem for a Bingham-fluid spiral-Couette flow has been

considered. The analytic solution of the basic flow has been derived. The effects of
axial sliding, outer cylinder rotation and the yield stress on the flow stability have
been analysed comprehensively. In the open geometry, the wide gap with radius ratio
ε = 0.5 has been studied in detail because the instability appears at lower Reynolds
number than in the narrow-gap cases. The code has been checked by comparing with
the results of Sparrow et al. (1964) and Meseguer & Marques (2000). The Newtonian
results have been reproduced when τ0 = 0.

For the Taylor–Couette flow, we have found that the yield stress does have some
destabilizing effects in the co-rotating regime with a relatively large value of Reo. This
is due to the effects of yield stress on the deformation rate of the basic flow, which
helps to transfer energy from the unperturbed flow to the perturbation. However, on
the other hand, when τ0 is large enough, the yield stress plays a stabilizing role on the
flow instability owing to the presence of the unyielded region, which leads the flow
region to be narrowed. As mentioned above, the flow is more stable in the narrow-gap
case than in the wide-gap case. The yield surface, which has been treated as a free
surface, has no effect on the stability criterion.

For the spiral-Couette flow, the presence of axial flow introduces new stresses
into the problem, which potentially change the dominant balances in the momentum
equations. When τ0 = 0, two instability mechanisms, caused by the rotating flow and
the axial shearing flow, are independent of each other. We found that the critical
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surface Reic = Reic(Reo, Rez) has multiple values in the co-rotating region. This is due
to the presence of a sudden dominant island of instability corresponding to a different
azimuthal mode, which can be observed from the neutral stability curves (NSC): This
phenomenon can be explained in term of competition between these two instability
mechanisms. However, when τ0 > 0, the velocity components (ūθ , ūz) of the basic flow
affect each other because of the existence of yield stress. When τ0 has a large value,
the critical surface changes smoothly, and no discontinuities and islands of instability
can be found. It appears that the yield stress plays an important role in inhibiting the
competition between the centrifugal and shear instability mechanisms.

Important differences can be seen between the co-rotating and counter-rotating
regions. The latter configurations exhibit a regular behaviour in the critical regime.
Nevertheless, for the Newtonian fluid, we find a sudden dominance of non-consecutive
azimuthal modes with low Rez. This is due to the mode competition and switching
between ±α modes. However, for the Bingham fluid, when τ0 has a large value, the
azimuthal modes change consecutively. This is due to the inhibiting effects of the yield
stress on the mode competition and switching. Though there are differences between
co-rotating and counter-rotating states, generally the rotation of the outer cylinder
does have some stabilizing effects on the flow.

The authors are very grateful for the support of the Natural Science Foundation
of China under Grant no. 19834020 and the RFDP under Grant no. 2000000310.

Appendix A. Linearization of boundary conditions at the yield surface
The complete derivation of the linear yield surface boundary condition (3.7), is

presented here.
First, γ̇ (u(Ry + R′)) = 0 is satisfied at each perturbed yield surface owing to the

yield criterion and continuity of stress throughout the flow field. It can be expanded
at Ry , i.e.

γ̇ (u(Ry + R′)) = γ̇ (ū(Ry + R′)) + γ̇ (u′(Ry + R′))

= γ̇ (ū(Ry)) +
∂ γ̇ (ū(Ry))

∂r
R′ + γ̇ (u′(Ry)) + O(R′2), (A 1)

where γ̇ (ū(Ry)) = 0 and through linearization, from (A 1) we obtain

γ̇ (u′(Ry)) = −∂ γ̇ (ū(Ry))

∂r
R′. (A 2)

The conditions (3.6a)–(3.6f ) follow directly from (A 2).
Secondly, the velocity at the yield surface can also be expanded at Ry , i.e.

u(Ry + R′) = ū(Ry + R′) + u′(Ry + R′)

= ū(Ry) +
∂ ū(Ry)

∂r
R′ + u′(Ry) + O(R′2). (A 3)

The components of the velocity at the yield surface are

ur (Ry + R′) = 0, (A 4a)

uθ (Ry + R′) =
Reo

Ro

(Ry + R′), (A 4b)

uz(Ry + R′) = 0. (A 4c)
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Through linearization of (A 3) and combination with (A 4a)–(A 4c), we can derive

u′(Ry) = 0. (A 5)

Appendix B. Linearization of constitutive equation
The invariants of the rate of strain in (2.6) can be expressed in cylinder coordinates

as

γ̇ =
√

1
2

(
γ̇ 2

rr + γ̇ 2
θθ + γ̇ 2

zz

)
+ γ̇ 2

rθ + γ̇ 2
rz + γ̇ 2

zθ , (B 1)

whose reciprocal can be expanded about the basic flow as

γ̇ −1 = ¯̇γ
−1 − 1

2
¯̇γ

−3
[(¯̇γ rr γ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz) + 2(¯̇γ rθ γ̇

′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]+ O(γ̇ ′),

(B 2)

where ¯̇γ =

√
1
2
(¯̇γ

2
rr + ¯̇γ

2
θθ + ¯̇γ

2
zz) + ¯̇γ

2
rθ + ¯̇γ

2
rz + ¯̇γ

2
zθ is the second invariant of the rate-

of-strain of the basic flow. The linearized form of (B 2) is

γ̇ −1 = ¯̇γ
−1

+ γ̇ ′−1, (B 3)

and γ̇ ′−1 = − 1
2
¯̇γ

−3
[(¯̇γ rr γ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz) + 2(¯̇γ rθ γ̇

′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]. The

linearized constitutive equation is derived by substitution of (B 3) into (2.6). It is

τij = τ̄ij + τ ′
ij . (B 4)

The expressions for each component are

τ ′
rr =

(
1 +

τ0

¯̇γ

)
γ ′

rr − τ0

2¯̇γ
3
[(¯̇γ rrγ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz)

+ 2(¯̇γ rθ γ̇
′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]¯̇γ rr, (B 5a)

τ ′
θθ =

(
1 +

τ0

¯̇γ

)
γ ′

θθ − τ0

2¯̇γ
3
[(¯̇γ rrγ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz)

+ 2(¯̇γ rθ γ̇
′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]¯̇γ θθ , (B 5b)

τ ′
zz =

(
1 +

τ0

¯̇γ

)
γ ′

zz − τ0

2¯̇γ
3
[(¯̇γ rrγ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz)

+ 2(¯̇γ rθ γ̇
′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]¯̇γ zz, (B 5c)

τ ′
rθ =

(
1 +

τ0

¯̇γ

)
γ ′

rθ − τ0

2¯̇γ
3
[(¯̇γ rrγ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz)

+ 2(¯̇γ rθ γ̇
′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]¯̇γ rθ , (B 5d)

τ ′
zθ =

(
1 +

τ0

¯̇γ

)
γ ′

zθ − τ0

2¯̇γ
3
[(¯̇γ rrγ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz)

+ 2(¯̇γ rθ γ̇
′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]¯̇γ zθ , (B 5e)

τ ′
rz =

(
1 +

τ0

¯̇γ

)
γ ′

rz − τ0

2¯̇γ
3
[(¯̇γ rrγ̇

′
rr + ¯̇γ θθ γ̇

′
θθ + ¯̇γ zzγ̇

′
zz)

+ 2(¯̇γ rθ γ̇
′
rθ + ¯̇γ zr γ̇

′
zr + ¯̇γ zθ γ̇

′
zθ )]¯̇γ rz. (B 5f)
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Substituting basic flow and the relation between the strain and velocity into (B 5), it
follows that

τ ′
rr =

(
1 +

τ0

¯̇γ

)
τ ′
rr , τ

′
θθ =

(
1 +

τ0

¯̇γ

)
γ ′

θθ , τ
′
zz

(
1 +

τ0

¯̇γ

)
γ ′

zz, τ
′
zθ =

(
1 +

τ0

¯̇γ

)
γ ′

zθ , (B 6a)

τ ′
rθ =

(
1 +

τ0

¯̇γ

)
γ ′

rθ − τ0

¯̇γ
3
(¯̇γ rθ γ̇

′
rθ + ¯̇γ zr γ̇

′
zr )¯̇γ rθ , (B 6b)

τ ′
rz =

(
1 +

τ0

¯̇γ

)
γ ′

rz − τ0

¯̇γ
3
(¯̇γ rθ γ̇

′
rθ + ¯̇γ zr γ̇

′
zr )¯̇γ rz, (B 6c)

Thus, equation (B 6a)–(B 6c) lead directly to (3.10a)–(3.10c).
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